Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. med. biol. res ; 39(1): 129-135, Jan. 2006. tab
Article in English | LILACS | ID: lil-419155

ABSTRACT

The clinical manifestations of neurocysticercosis (NC) are varied and depend on the number and location of cysts, as well as on the host immune response. Symptoms usually occur in NC when cysticerci enter a degenerative course associated with an inflammatory response. The expression of brain damage markers may be expected to increase during this phase. S100B is a calcium-binding protein produced and released predominantly by astrocytes that has been used as a marker of reactive gliosis and astrocytic death in many pathological conditions. The aim of the present study was to investigate the levels of S100B in patients in different phases of NC evolution. Cerebrospinal fluid and serum S100B concentrations were measured in 25 patients with NC: 14 patients with degenerative cysts (D), 8 patients with viable cysts (V) and 3 patients with inactive cysts. All NC patients, except 1, had five or less cysts. In most of them, symptoms had been present for at least 1 month before sample collection. Samples from 8 normal controls (C) were also assayed. The albumin quotient was used to estimate the blood-brain barrier permeability. There were no significant differences in serum (P = 0.5) or cerebrospinal fluid (P = 0.91) S100B levels among the V, D, and C groups. These findings suggest that parenchymal changes associated with a relatively small number of degenerating cysts probably have a negligible impact on glial tissue.


Subject(s)
Humans , Animals , Male , Female , Adolescent , Adult , Middle Aged , Nerve Growth Factors/blood , Nerve Growth Factors/classification , Neurocysticercosis/immunology , /blood , /classification , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Neurocysticercosis/blood , Neurocysticercosis/classification
2.
Braz. j. med. biol. res ; 33(7): 829-34, July 2000. ilus, graf
Article in English | LILACS | ID: lil-262683

ABSTRACT

We evaluated the effects of infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) on the formation and expression of memory for inhibitory avoidance. Adult male Wistar rats (215-300 g) were implanted under thionembutal anesthesia (30 mg/kg, ip) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Bilateral infusions of AP5 (5.0 µg) were given 10 min prior to training, immediately after training, or 10 min prior to testing in a step-down inhibitory avoidance task (0.3 mA footshock, 24-h interval between training and the retention test session). Both pre- and post-training infusions of AP5 blocked retention test performance. When given prior to the test, AP5 did not affect retention. AP5 did not affect training performance, and a control experiment showed that the impairing effects were not due to alterations in footshock sensitivity. The results suggest that NMDA receptor activation in the BLA is involved in the formation, but not the expression, of memory for inhibitory avoidance in rats. However, the results do not necessarily imply that the role of NMDA receptors in the BLA is to mediate long-term storage of fear-motivated memory within the amygdala.


Subject(s)
Animals , Male , Rats , 2-Amino-5-phosphonovalerate/pharmacology , Amygdala/drug effects , Avoidance Learning/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Fear/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Behavior, Animal , Exercise Test , Immobilization , Memory/drug effects , Physical Conditioning, Animal , Rats, Wistar
3.
Braz. j. med. biol. res ; 30(8): 967-70, Aug. 1997. tab
Article in English | LILACS | ID: lil-197253

ABSTRACT

Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3,6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 mug/side), SCH23390 (0.5 mug/side), norepinephrine (0.3 mug/side), timolol (0.3 mug/side), 8-OH-DPAT (2.5 mug/side), NAN-190 (2.5 mug/side), forskolin (0.5 mug/side), KT5720 (0.5 mug/side) or 8-Br-cAMP (1.25 mug/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were inffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory cosolidation at 3 and 6 h after training, which is regulated by D1, Beta, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.


Subject(s)
Rats , Animals , Male , Amygdala/drug effects , Cyclic AMP-Dependent Protein Kinases/drug effects , Cyclic AMP/analysis , Hippocampus/drug effects , Memory/physiology , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Benzazepines/pharmacology , Colforsin/pharmacology , Cyclic AMP Response Element-Binding Protein/analysis , Norepinephrine/pharmacology , Rats, Wistar , Signal Transduction
4.
Psiquiatr. biol ; 3(1): 25-34, mar. 1995. tab, ilus
Article in Portuguese | LILACS | ID: lil-193694

ABSTRACT

A Encefalopatia Hepática (EH) é uma síndrome neuropsiquiátrica decorrente da insuficiência hepática seja esta aguda ou crônica. Embora vários aspectos envolvidos na sua patofisiologia ainda näo estejam completamente esclarecidos, há um consenso de que esta seja multifatorial. Acredita-se que a falência hepática leve ao acúmulo de substâncias neuroativas e/ou potencialmente tóxicas responsáveis pelas alteraçöes no funcionamento cerebral. Desde o início da década de 80 o sistema GABAérgico vem sendo considerado potencialmente envolvido na patogênese da EH. Achados experimentais recentes, tanto em modelos animais quanto em humanos, confirmaram tal hipótese e levantam novas perspectivas na compreensäo e tratamento desta síndrome. Esta revisäo objetiva apresentar as bases teórico-experimentais que correlacionam o sistema GABAérgico e seus moduladores endógenos bem como a aplicabilidade de tais achados.


Subject(s)
Humans , Anti-Anxiety Agents , Hepatic Encephalopathy/physiopathology , GABA Modulators , gamma-Aminobutyric Acid/physiology
5.
Braz. j. med. biol. res ; 24(3): 301-6, mar. 1991. tab
Article in English | LILACS | ID: lil-99568

ABSTRACT

Adult rats were submitted to two different behavioral tasks using the same apparantus: the habituation of exploration of the apparatus considered as a novel environment as measured by the decrease in number of reaings and of ambulation between training and testing, and step-down inhibitory avoidance as measured by the increase in the latency to step down from a start platform into an electrified grid between the training and the test session.The training-test interval for both tasks was 20 h.The immediate post-training injection of the benzodiazepine receptor antagonist flumazenil (10 nmol) bilateral into the hippocampus enhanced retention of the two tasks.Application of the same drug, at the same dose to the septum or amygdala had no effect on habituation but enhanced retention of the avoidance task. The data are consistent with previous findings showing that both tasks are accompanied by the release of benzodiazepine like immunoreactivity in the three structures and that this release is greater after the avoidance task. The present findings suggest a differential regional involvement of endogenous benzodiazepine-mediated mechanisms in memory modulation, according to the task undertaken


Subject(s)
Rats , Animals , Male , Amygdala/drug effects , Flumazenil/pharmacology , Habituation, Psychophysiologic/drug effects , Hippocampus/drug effects , Retention, Psychology/drug effects , Septum Pellucidum/drug effects , Amygdala/physiology , Avoidance Learning/drug effects , Avoidance Learning/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Flumazenil/administration & dosage , Habituation, Psychophysiologic/physiology , Hippocampus/physiology , Microinjections , Receptors, GABA/drug effects , Receptors, GABA/physiology , Retention, Psychology/physiology , Septum Pellucidum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL